
Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 1 / 15 2024/07/04 20:26

OPC UA SDK for .NET
Tested? You want it?
License Model Prices Quotation Order Now

https://opcua.traeger.de/en/#licensemodel
https://opcua.traeger.de/en/#prices
https://opcua.traeger.de/en/purchase-opc-ua-sdk-net/
https://opcua.traeger.de/en/purchase-opc-ua-sdk-net/
https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 2 / 15 2024/07/04 20:26

Book - The whole Manual as eBook

Development Guides
Client Development Guide Server Development Guide Use Cases FAQs

Download
The OPC UA .NET SDK comes with an evaluation license which can be used unlimited for each
application run for 30 minutes. If this restriction limits your evaluation options, you can request
another evaluation license from us for free. Just ask our support (via support@traeger.de) or let us
consult you directly and clarify open questions with our developers!

OPC UA .NET SDK for Clients – Evaluation Package1)

Download ZIP Archive of Opc.UaFx.Client (Version: 2.42.0.0 – 2024-06-05)
Download NuGet Package of Opc.UaFx.Client (Version: 2.42.0.0 – 2024-06-05)

OPC UA .NET SDK for Clients and Servers – Evaluation Package2)

Download ZIP Archive of Opc.UaFx.Advanced (Version: 2.42.0.1 – 2024-06-07)
Download NuGet Package of Opc.UaFx.Advanced (Version: 2.42.0.1 – 2024-06-07)

OPC UA .NET SDK for LabVIEW Clients – Evaluation Package3)

Download ZIP Archive of Opc.UaFx.Client.LabView (Version: 1.1.3.0 – 2024-06-14)

OPC UA .NET SDK for Unity Clients – Evaluation Package4)

Download Unity Package of Opc.UaFx.Client (Version: 2.26.0.0 – 2022-04-13)

OPC UA .NET SDK for .NET Framework 3.5 Clients and Server – Evaluation Package5)

Download ZIP Archive of Opc.UaFx.Advanced (Version: 2.0.1.1 – 2017-06-07)
Download NuGet Package of Opc.UaFx.Advanced (Version: 2.0.1.1 – 2017-06-07)

OPC Watch (Version: 2.42.0.0 – 2024-06-05)
A free and simple but professional OPC UA Client to access OPC UA Servers.

Version History - The list of improvements in each version

Preview Download
OPC UA .NET SDK for Clients – PREV1 for OPC UA v1.046)

Download ZIP Archive of Opc.UaFx.Client (Version: 3.0.0.0 preview1210917 – 2021-09-17)
Download NuGet Package of Opc.UaFx.Client (Version: 3.0.0.0 preview1210917 – 2021-09-17)

OPC UA .NET SDK for Clients and Servers – PREV1 for OPC UA v1.047)

Download ZIP Archive of Opc.UaFx.Advanced (Version: 3.0.0.0 preview1210917 – 2021-09-17)
Download NuGet Package of Opc.UaFx.Advanced (Version: 3.0.0.0 preview1210917 – 2021-09-17)

https://docs.traeger.de/en/software/sdk/opc-ua/net/client.development.guide
https://docs.traeger.de/en/software/sdk/opc-ua/net/server.development.guide
https://docs.traeger.de/en/software/sdk/opc-ua/net/development.usecases
https://docs.traeger.de/en/software/sdk/opc-ua/net/development.faqs
mailto:mailto:support@traeger.de
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.client.2024-06-05-2.42.0.0.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.client.2.42.0.2024-06-05-2.42.0.0.nupkg
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.advanced.2024-06-07-2.42.0.1.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.advanced.2.42.0.1.2024-06-07-2.42.0.1.nupkg
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.client.labview.2024-06-14-1.1.3.0.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.client.2.26.0.2022-04-13-2.26.0.0.unitypackage
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/net35/opc.uafx.advanced.2017-06-07-2.0.1.1.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/net35/opc.uafx.advanced.2017-06-07-2.0.1.1.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/net35/opc.uafx.advanced.2.0.1.1.2017-06-07-2.0.1.1.nupkg
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/net35/opc.uafx.advanced.2.0.1.1.2017-06-07-2.0.1.1.nupkg
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opcwatch.2024-06-05-2.42.0.0.zip
https://docs.traeger.de/en/software/sdk/opc-ua/net/version.history
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.client.2021-09-17-3.0.0.0-preview1210917.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.client.2021-09-17-3.0.0.0-preview1210917.nupkg
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.advanced.2021-09-17-3.0.0.0-preview1210917.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc.uafx.advanced.2021-09-17-3.0.0.0-preview1210917.nupkg
https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 3 / 15 2024/07/04 20:26

Runtime Download
To connect to OPC Classic Servers in 64 bit applications and to enumerate (= discover) local OPC Classic
Servers, the Core Components of the OPC Foundation must be installed on the target system. You can find
these on the website of the OPC Foundation or here:

OPC Core Components Redistributables8)

Download ZIP Archive of OPC Core Components (Version: 3.00.107 – 2018-01-30)
Download ZIP Archive of OPC Core Components (Version: 3.00.108 – 2019-12-20)

OPC UA Client
OPC UA Client Development Guide

Example Code: OPC UA Client

C#
VB

namespace Client
{
 using System;
 using System.Threading;

 using Opc.UaFx.Client;

 public class Program
 {
 public static void Main()
 {
 using (var client = new OpcClient("opc.tcp://localhost:4840")) {
 client.Connect();

 while (true) {
 var temperature = client.ReadNode("ns=2;s=Temperature");
 Console.WriteLine("Current Temperature is {0} °C", temperature);

 Thread.Sleep(1000);
 }
 }
 }
 }
}

https://opcfoundation.org/developer-tools/samples-and-tools-classic/core-components/
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc-core-components-redistributables-3.00.107-20180130.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc-core-components-redistributables-3.00.107-20180130.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc-core-components-redistributables-3.00.108-20191220.zip
https://docs.traeger.de/downloads/software/sdk/opc-ua/net/opc-core-components-redistributables-3.00.108-20191220.zip
https://docs.traeger.de/en/software/sdk/opc-ua/net/client.development.guide
http://www.google.com/search?q=new+msdn.microsoft.com
https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 4 / 15 2024/07/04 20:26

Imports System
Imports System.Threading

Imports Opc.UaFx.Client

Namespace Client
 Public Class Program
 Public Shared Sub Main()
 Using client = New OpcClient("opc.tcp://localhost:4840")
 client.Connect()

 While True
 Dim temperature = client.ReadNode("ns=2;s=Temperature")
 Console.WriteLine("Current Temperature is {0} °C", temperature)

 Thread.Sleep(1000)
 End While
 End Using
 End Sub
 End Class
End Namespace

OPC UA Server
OPC UA Server Development Guide

Example Code: OPC UA Server

C#
VB

https://docs.traeger.de/en/software/sdk/opc-ua/net/server.development.guide
https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 5 / 15 2024/07/04 20:26

namespace Server
{
 using System.Threading;

 using Opc.UaFx;
 using Opc.UaFx.Server;

 public class Program
 {
 public static void Main()
 {
 var temperatureNode = new OpcDataVariableNode<double>("Temperature", 100.0);

 using (var server = new OpcServer("opc.tcp://localhost:4840/", temperatureNode))
{
 server.Start();

 while (true) {
 if (temperatureNode.Value == 110)
 temperatureNode.Value = 100;
 else
 temperatureNode.Value++;

 temperatureNode.ApplyChanges(server.SystemContext);
 Thread.Sleep(1000);
 }
 }
 }
 }
}

Imports System.Threading

Imports Opc.UaFx
Imports Opc.UaFx.Server

Namespace Server
 Public Class Program
 Public Shared Sub Main()
 Dim temperatureNode = New OpcDataVariableNode(Of Double)("Temperature", 100.0)

 Using server = New OpcServer("opc.tcp://localhost:4840/", temperatureNode)
 server.Start()

 While True
 If (temperatureNode.Value = 110) Then
 temperatureNode.Value = 100
 Else
 temperatureNode.Value += 1
 End If

 temperatureNode.ApplyChanges(server.SystemContext)
 Thread.Sleep(1000)
 End While
 End Using
 End Sub
 End Class
End Namespace

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 6 / 15 2024/07/04 20:26

1) , 2) , 3) , 4) , 5) Your “License Code” turns the package into a productive full version.
6) , 7) Not recommended for productive use.
8) Provided by the OPC Foundation

https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 7 / 15 2024/07/04 20:26

Client Development Introduction
Tested? You want it?
License Model Prices Quotation Order Now

https://opcua.traeger.de/en/#licensemodel
https://opcua.traeger.de/en/#prices
https://opcua.traeger.de/en/purchase-opc-ua-sdk-net/
https://opcua.traeger.de/en/purchase-opc-ua-sdk-net/
https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 8 / 15 2024/07/04 20:26

Connection to the Server

Connect
This is happening on calling 'Connect':

Checking if an address was set (ServerAddress property).1.
The Client changes its status (OpcClient.State property) to the value Connecting.2.
The Client checks its configuration for validity and conclusiveness.3.
Next the Client tries to find an endpoint.4.
This happens via DiscoveryClient where endpoints with the desired endpoint configuration are
compared and the endpoint fulfilling or at least sufficing the configuration is chosen. An endpoint is
chosen depending on the used settings of the Client.
Next the Client creates the configuration for a new session.5.
Instance certificates are checked:6.

Client certificate (depending on security configuration)1.
Server certificate (the certificate provided by the endpoint)2.

A channel acting as a connection between Client and Server is created.7.
Attempt to create a session via the channel.8.
After further exchange and checking of session data the session gets activated.9.
Finally, available Namespaces are retrieved10.
And precautions for connection surveillance are taken:11.

“KeepAlive-Tracking” for detecting connection abortions1.
“Notification-Tracking” for receiving notifications2.

The Client changes its status (OpcClient.State property) to the value Connected.12.

Disconnect
This is happening on calling 'Disconnect':

The Client changes its status (OpcClient.State property) to the value Disconnecting.1.
The Client releases all gathered resources (e.g. File Handles for OPC UA File Nodes)2.
Ends the connection surveillance3.
The active session is ended.4.
The channel created during Connect is closed and disposed of.5.
The Client changes its status (OpcClient.State property) to the value Disconnected.6.

BreakDetection
The “BreakDetection” is a mechanism responsible for the detection of connection abortions using
“KeepAlive”-Tracking to detect a timeout of the connection to the Server. If there is a timeout, the
Client automatically tries to establish a connection to the Server. In case of a newly created
connection a new session often happens. While KeepAlive messages are sent between Client and Server
in KeepAlive in order to “test” the connection and “hold it up”, it is assumed that the connection was
interrupted when response times to a KeepAlive message are too long (= reached timeout?). In that case
another KeepAlive message is sent in increasing time intervals. An aborted connection is assumed if these
messages also are unanswered and the previously described mechanism to re-establish the connection is
introduced. The abortion detection is active by default and can be activated via the

https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 9 / 15 2024/07/04 20:26

OpcClient.UseBreakDetection property.

Connection Parameters
In order for the Client to connect to the Server the correct parameters have to be set. Generally the
address of the Server (OpcClient.ServerAddress property) is needed. The Uri (= Uniform Resource
Identifier) instance feeds the Client with every primarily necessary information about the Server. The
Server-Address “opc.tcp://192.168.0.80:4840” e.g. contains the information of the scheme “opc.tcp”
(possible are “http”, “https”, “opc.tcp”, “net.tcp” and “net.pipe”) which establishes over which protocol
data is exchanged in which way. In general “opc.tcp” is recommended for OPC UA Servers in a local
network. Servers outside a local network should use “http” or even better “https”. Furthermore the
address defines that the Server is executed on a computer with the IP address “192.168.0.80” and listens
to requests via the port numbered “4840” (which is the default port for the OPC UA, custom port numbers
are also possible). Instead of a static IP address the DNS name of the computer can be used as well, so
instead of “127.0.0.1” also “localhost” can be used.

If the Server does not define an endpoint whose policy uses the security mode “None” (also possible
are “Sign” and “SignAndEncrypt”) for data exchange, this Endpoint-Policy has to be configured
manually (OpcClient.Security.EndpointPolicy property). If, however, an endpoint with the policy
“None” is provided by the Server, the Client automatically chooses it. This behavior is activated by
default and can be deactivated (OpcClient.Security.UseOnlySecureEndpoints property). The
automatic choice of the endpoint can be done according to the OPC Foundation by configuring the
Client in a way that the endpoint defining the highest Policy-Levels per definition (a number)
automatically is the “best” for data exchange. This behavior is deactivated by default but can be
activated (OpcClient.Security.UseHighLevelEndpoint property).

If the Server uses an access control, for example via an ACL (= Access Control List), valid user data
for identifying the user has to be given to the Server before a connection can be established. The
user identity can either be varified through a username-password pair (OpcClientIdentity class) or
through a certificate (OpcCertificateIdentity class). Then the identity has to be mentioned to the
Client (OpcClient.Security.UserIdentity property) in order for it to deliver the identity to the Server
while connecting.

Endpoints
Endpoints result from the cross product of the used base addresses of the Server and the security
strategies supported by the Server. The results are the base addresses of every scheme-port pair
supported, while several schemes (possible are “http”, “https”, “opc.tcp”, “net.tcp” and “net.pipe”) can be
determined for data exchange on different ports. The hereby linked policies determine the procedure
during the data exchange. Consisting of the Policy Level, the Security-Mode and the Security-Algorithm,
every policy determines the kind of secure data exchange.

For example, when two Security-Policies are followed, they can be defined as follows:

Security-Policy A: Level=0, Security-Mode=None, Security-Algorithm=None
Security-Policy B: Level=1, Security-Mode=Sign, Security-Algorithm=Basic256

When furthermore, for example, three Base-Addresses are combined for different schemes as follows:

Base-Address A: "https://mydomain.com/"

https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 10 / 15 2024/07/04 20:26

Base-Address B: "opc.tcp://192.168.0.123:4840/"
Base-Address C: "opc.tcp://192.168.0.123:12345/"

The results will be the following endpoint descriptions through the cross product:

Endpoint 1: Address="https://mydomain.com/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 2: Address="https://mydomain.com/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256
Endpoint 3: Address="opc.tcp://192.168.0.123:4840/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 4: Address="opc.tcp://192.168.0.123:4840/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256
Endpoint 5: Address="opc.tcp://192.168.0.123:12345/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 6: Address="opc.tcp://192.168.0.123:12345/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256

Here the address part of the endpoint is always needed by the Client (via constructor or via
ServerAddress property). While the Client tries to find an endpoint with the Security-Mode “None” by
default, the policy of the endpoint has to be configured manually (OpcServer.Security.EndpointPolicies
property) when none exists.

Information about Certificates

Certificates in OPC UA
Certificates are used to ensure the authenticity and integrity of Client and Server applications.
Therefore they act as a kind of identity card for Client as well as Server application. This “identification
card” has to be stored somewhere as it exists as a form of file. The decision on where certificates are
stored is individual. On Windows, every certificate can be passed to the system and Windows takes care
of the Store. As an alternative custom Stores (= directories) can be set.

There are different types of Stores for certificates:

Store for application certificates
The Store also called Application Certificate Store exclusively contains certificates of those
applications that use this Store as an Application Certificate Store. Here a Client / Server application
saves its own certificate.
Store for certificates from trustworthy certificate issuers
The Store also called Trusted Issuer Certificate Store exclusively contains certificates from
certificate issuers that issue further certificates. Here a Client / Server application saves all
certificates from issuers whose certificates shall be treated as trusted by default.
Store for trustworthy certificates
The Store also called Trusted Peer Store exclusively contains certificates treated as trusted. Here
a Client saves the certificates from trusted Servers and a Server saves the certificates from
trusted Clients.
Store for rejected certificates
The Store also called Rejected Certificate Store exclusively contains certificates that are decreed
as not trusted. Here a Client saves the certificates from untrusted Servers and a Server saves

https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 11 / 15 2024/07/04 20:26

the certificates from untrusted Clients.

Regardless of the Store being located somewhere in the system or in the file system via a directory,
generally certificates in the Trusted Store are trusted and certificates in the Rejected Store are
untrusted. Certificates not belonging to either of the former are automatically saved in the Trusted Store,
if the certificate of the certificate issuer mentioned in the certificate is deposited in the Trusted Issuer
Store; otherwise it is automatically saved in the Rejected Store. Even if a trustworthy certificate has
expired or if its deposited information cannot be successfully verified through the certification center the
certificate is graded as not trustworthy and saved in the Rejected Store. During this process it also is
removed from the Trusted Peer Store. A certificate can also expire when it is listed in a CRL (=Certificate
Revocation List), which can be kept separately in the concerning store.

A certificate that the Client receives from the Server or the other way around is for the moment always
classified as unknown and therefore also treated as untrusted. In order for a certificate to be treated as
trusted it must be declared as such. This happens by saving the certificate of the Client in the Trusted
Store of the Server and the certificate of the Server in the Trusted Store of the Client.

Dealing with a Server certificate at the Client:

The Client establishes the certificate of the Server on whose endpoint it shall connect with.1.
The Client verifies the certificate of the Server.2.

Is the certificate valid?1.
Has the effective date expired?1.
Is the issuer's certificate valid?2.

Does the certificate exist in the Trusted Peer Store?2.
Is it listed in a CRL?1.

Does the certificate exist in the Rejected Store?3.
When the certificate is trusted, the Client establishes a connection to the server.3.

Dealing with a Client certificate at the Server:

The Server receives the Client's certificate from the Client while connecting.1.
The Server verifies the certificate of the Client.2.

Is the certificate valid?1.
Has the effective date expired?1.
Is the issuer's certificate valid?2.

Does the certificate exist in the Trusted Peer Store?2.
Is it listed in a CRL?1.

Does the certificate exist in the Rejected Store?3.
When the certificate is trusted, the Server allows the connection of the Client and operates it.3.

In case the verification of the certificate from the respective counterpart fails, the verification can be
extended by custom mechanisms and still decided on user scale, if the certificate gets accepted or not.

Types of Certificates
General: Self-Signed Certificates vs. Signed Certificates

A certificate is comparable to a document. A document can be issued by everybody and can also be signed
by everybody. However, the main difference here is, if the signee of a document really vouches for its
correctness (like a notary) or if the signee is the owner of the document itself. Especially documents of the
latter are not really inspiring confidence because no (legally) recognized instance as e.g. a notary vouches

https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 12 / 15 2024/07/04 20:26

for the owner of the document.

As certificates are comparable to documents and also have to show a (digital) signature, the situation here
is the same. The signature of a certificate has to tell the recipient of the certificate copy, who vouches for
this certificate. Herefore it always applies that the issuer of a certificate also signs it. When the issuer of a
certificate equals the subject of the certificate, you call this a self-signed certificate (subject equals
issuer). When the issuer of a certificate does not equal the subject of the certificate, you call this a
(simple / normal / signed) certificate (subject does not equal issuer).

As certificates are used especially in the context of the OPC UA authentication of an identity (of a certain
Client or Server application), signed certificates should be used as application certificates for the own
application. If, however, the issuer of the certificate also its owner, this self-signed certificate should only
be trusted when the owner is rated as trusted. Such certificates were, as described, signed by the issuer of
the certificate. Therefore, the issuer certificate has to be located in the Trusted Issuer Store of the
application. When the issuer certificate cannot be found there , the certificate chain is declared incomplete
and the certificate is not accepted by the counterpart. Yet, if the issuer certificate of the issuer of the
application certificate is not a self-signed certificate, the certificate of its issuer has to be available in the
Trusted Issuer Store.

User Identification
User Identification through Certificates

Next to the use of a certificate as an identification card for Client / Server applications, a certificate can
also be used to identify a user. A Client application is always operated by a certain user by whom it
operates with the Server. Depending on the Server configuration a Server can request additional
information about the identity of the Client's user from the Client. The user has the possibility to prove his
identity through a certificate. How thoroughly a Server is examining the certificate on validity, authenticity
and confidentiality depends on the Server. The Server provided by the Framework exclusively checks, if
the Thumbprint information of the user identity can be found in its ACL (=Access Control List) for
certificate-based user identities.

Aspects of Security

Productive use
The primary goal of the Framework is to make getting the grips of the OPC UA as easy as possible. This
basic thought sadly also leads to the fact that without secondary configuration of the Server a completely
save connection / communication between Client and Server does not occur. Yet, if the final Spike has
been implemented and tested, second thought should be given to the aspects of security.

Even if one is dependant on the security mechanisms provided by the Server while developing a Client,
one should always make the best choice possible. In general, the choice should always be the endpoint
(OpcClient.ServerAddress property and OpcClient.Security.EndpointPolicy property) that provides
the most secure connection (e.g. “https” instead of “http” as a scheme). This includes endpoints that
follow the best Security-Policy possible. Keep an eye on the Security-Mode and the Security-Algorithm.
According to the OPC Foundation, if you want to have the savest endpoint, refer to the endpoint with the
highest Security-Level (OpcClient.Security.UseHighLevelEndpoint property).

For simplified handling of certificates the Client accepts every certificate by default

https://en.wikipedia.org/wiki/Spike_(software_development)
https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 13 / 15 2024/07/04 20:26

(OpcClient.Security.AutoAcceptUntrustedCertificates property), also those it should deny under
productive conditions because only certificates known to the Client (located in the Trusted Peer Store)
apply as truly trusted. Apart from that the validity of a certificate should always be verified, including the
“expiration date” of the certificate, for example. Furthermore it is advisable to check the domains
referenced in the certificate (OpcClient.Security.VerifyServersCertificateDomains property). Other
properties of the certificate or looser rules for the validity and trustworthiness of a Server certificate can be
furthermore carried out manually (OpcClient.CertificateValidationFailed event).

If the Server uses a security process which controls the access via user identities, a concrete user identity
should always be chosen (OpcClient.Security.UserIdentity property). Apart from the fact that
anonymous identities almost always have only limited access, the Client can be granted access to more
sensitive data when a concrete identity (e.g. a certificate or a username-password pair) is used. At the
same time security is higher at e.g. a signed data transmission using a Certificate Identity.

https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 14 / 15 2024/07/04 20:26

https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

Söllnerstr. 9 92637 Weiden info@traeger.de +49 (0)961 48 23 0 0

OPC UA SDK for .NET 15 / 15 2024/07/04 20:26

Table of Contents
Tested? You want it? 1 ..
Development Guides 2 ..
Download 2 ...
Preview Download 2 ..
Runtime Download 3 ...
OPC UA Client 3 ..

Example Code: OPC UA Client 3 ...
OPC UA Server 4 ...

Example Code: OPC UA Server 4 ..
Tested? You want it? 7 ..
Connection to the Server 8 ..

Connect 8 ...
Disconnect 8 ..
BreakDetection 8 ...
Connection Parameters 9 ...
Endpoints 9 ..

Information about Certificates 10 ...
Certificates in OPC UA 10 ...
Types of Certificates 11 ..
User Identification 12 ...
Aspects of Security 12 ..
Productive use 12 ...

https://www.traeger.de
mailto:info@traeger.de?subject=OPC UA SDK for .NET

	Table of Contents
	OPC UA SDK for .NET
	Tested? You want it?
	Development Guides
	Download
	Preview Download
	Runtime Download
	OPC UA Client
	OPC UA Server

	Client Development Introduction
	Tested? You want it?
	Connection to the Server
	Connect
	Disconnect
	BreakDetection
	Connection Parameters
	Endpoints

	Information about Certificates
	Certificates in OPC UA
	Types of Certificates
	User Identification
	Aspects of Security
	Productive use

